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COMMENT 

Comment on ‘Exact evaluation of a path integral relating to 
an electron gas in a random potential’ 

Amar Maheshwari 
Department of Physics, Himachal Pradesh University, The Manse, Simla-171001, India 

Received 17 December 1974 

Abstract. We give an alternative derivation of the evaluation by Papadopoulos of the path 
integral relating to an electron gas. The method employed is a simple application of the 
powerful technique of global integration on function space. The integration is direct and 
does not require coupling of the system to auxiliary external forces. 

Without loss of generality, we take as our starting point equation (2.2) of Papadopoulos 
(1974) with h = m = 1 and treat the problem in one dimension: 

Following Maheshwari (1975), we have written the function space integral in (1) as an 
integral over Oxxo, the space of continuous functions x E Oxxo such that x(0) = xo, 
x(p) = x defined over the interval T = [0, PI, with a promeasure o’ corresponding to the 
Uhlenbeck-Ornstein distribution 

Go(x, PIX,, 0) is the propagator of the Bloch equation for the harmonic oscillator. 
By means of the average trajector Z(t) ,  Oxxo can be mapped onto O o ( y ~ O o ;  
y(0)  = y(P)  = 0) such that 

XEO~.~ + y ( t )  = x ( t ) - n ( t ) ~ O ~ ,  

Z(t)  = x(t) dw’(x) = [x sinh Rt + xo sinh SyP - t)]/sinh QP. (4) 
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The integral in (2 )  can now be written as an integral on the space 
of promeasure U’ : 

with the image w 

The promeasure U,  corresponding to (3), can be defined in terms of its Fourier transform 
94) on the space A dual of B o ,  which is the space of bounded measures p on T, 
and the covariance C(r, s) : 

9 4 )  = exP(-;wP))> 

G(r , s )  = [e-(r-s)sinhRrsinhn(p-s)+B+(r-s)sinh~sinhR(p-r)]/[RsinhRB]. (6)  

The function space integral on Bo can be readily evaluated by taking a linear map P: 
x E Oo -+ U = (A, x) (=It x(t) dt) E R, where A is the Lebesgue measure on the interval 
T = [ O , f l ] .  From Bourbaki (1969) and Maheshwari (1975) one finds that the image of 
dw under P is 

on [w, where 

1 
R3 W(A) = JT dA(r) JT dA(s)G(r, s) = -(fin- 2 tanh @p). 

Thus 

Combining equations (2), ( 5 )  and (8), we get 

with the corrected expression of the corresponding result given by Papadopoulos. 
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